A szív felépítése és elve


A szív egy izmos szerv emberekben és állatokban, amely vért pumpál az ereken.

  • Szívfunkciók - miért van szükségünk szívre?
  • Mennyi vért pumpál az ember szíve?
  • Keringési rendszer
  • Mi a különbség a vénák és az artériák között?
  • A szív anatómiai felépítése
  • Szív falszerkezete
  • Szív szelepek
  • Szíverek és koszorúér keringés
  • A szív fejlődése (formája)?
  • Élettan - az emberi szív alapelve
  • Szívműködés
  • Szívizom
  • Szívvezetési rendszer
  • Szívverés
  • Szívhangok
  • Szívbetegség
  • Életmód és a szív egészsége

Szívfunkciók - miért van szükségünk szívre?

Vérünk az egész testet oxigénnel és tápanyagokkal látja el. Ezen felül tisztító funkcióval is rendelkezik, elősegítve az anyagcsere-hulladék eltávolítását..

A szív feladata a vér pumpálása az ereken.

Mennyi vért pumpál az ember szíve?

Az emberi szív 7000 és 10 000 liter vért pumpál egy nap alatt. Ez évente körülbelül 3 millió liter. Az élet során akár 200 millió liter is kiderül!

A perc alatt pumpált vér mennyisége az aktuális fizikai és érzelmi terheléstől függ - minél nagyobb a terhelés, annál több vérre van szüksége a testnek. Tehát a szív 5 perc és 30 liter között képes áthaladni önmagán egy perc alatt..

A keringési rendszer körülbelül 65 ezer edényből áll, teljes hosszuk körülbelül 100 ezer kilométer! Igen, nem zártuk le.

Keringési rendszer

Keringési rendszer (animáció)

Az emberi szív- és érrendszert a vérkeringés két köre alkotja. Minden szívveréssel a vér egyszerre mozog mindkét körben.

A vérkeringés kis köre

  1. A felső és az alsó vena cava-ból származó oxigénhiányos vér a jobb pitvarba jut, majd tovább a jobb kamrába.
  2. A jobb kamrából a vért a tüdő törzsébe tolják. A tüdőartériák a vért közvetlenül a tüdőbe vezetik (a tüdőkapillárisokig), ahol oxigént kap és széndioxidot bocsát ki.
  3. Miután elegendő oxigént kapott, a vér visszatér a szív bal pitvarába a tüdővénákon keresztül.

A vérkeringés nagy köre

  1. A bal pitvarból a vér a bal kamrába mozog, ahonnan az aortán keresztül tovább szivattyúzódik a szisztémás keringésbe.
  2. Nehéz úton haladva az üreges vénákon keresztül a vér ismét a szív jobb pitvarába érkezik.

Normális esetben a szív kamráiból kiszorított vér mennyisége minden összehúzódásnál megegyezik. Tehát a vérkeringés nagy és kis körében azonos mennyiségű vér áramlik egyszerre.

Mi a különbség a vénák és az artériák között?

  • A vénákat arra tervezték, hogy a vért a szívbe szállítsák, míg az artériákat arra tervezték, hogy a vért ellenkező irányba szállítsák.
  • A vénákban a vérnyomás alacsonyabb, mint az artériákban. Ennek megfelelően az artériák falát nagyobb nyújthatóság és sűrűség jellemzi..
  • Az artériák telítik a "friss" szövetet, és az erek "hulladék" vért vesznek fel.
  • Érrendszeri károsodás esetén az artériás vagy vénás vérzés intenzitása és vérszíne alapján megkülönböztethető. Artériás - erős, lüktető, "szökőkúttal" ver, a vér színe élénk. Vénás - állandó intenzitású vérzés (folyamatos áramlás), a vér színe sötét.

A szív anatómiai felépítése

Az emberi szív tömege csak körülbelül 300 gramm (nőknél átlagosan 250 g, a férfiaknál 330 g). Viszonylag alacsony súlya ellenére kétségtelenül ez az emberi test fő izma és életének alapja. A szív mérete valóban megközelítőleg megegyezik az ember öklével. A sportolóknak másfélszer nagyobb a szíve, mint egy hétköznapi embernek.

A szív a mellkas közepén helyezkedik el 5-8 csigolya szintjén.

Normális esetben a szív alsó része leginkább a mellkas bal oldalán található. A veleszületett patológiának van egy változata, amelyben minden szerv tükröződik. A belső szervek transzpozíciójának nevezik. A tüdő, amely mellett a szív található (általában - a bal oldalon), a másik feléhez képest kisebb méretű.

A szív hátsó felülete a gerincoszlop közelében helyezkedik el, és az elülső felületet a szegycsont és a bordák megbízhatóan védik.

Az emberi szív négy független üregből (kamrából) áll, amelyeket partíciók osztanak fel:

  • a felső két - a bal és a jobb pitvar;
  • és két alsó - bal és jobb kamra.

A szív jobb oldala magában foglalja a jobb pitvart és a kamrát. A szív bal felét a bal kamra és az átrium képviseli..

Az alsó és a felső vena cava belép a jobb pitvarba, a tüdő vénái pedig a balba. A pulmonalis artériák (más néven pulmonalis trunk) elhagyják a jobb kamrát. Az emelkedő aorta felemelkedik a bal kamrából.

Szív falszerkezete

Szív falszerkezete

A szív védelmet nyújt más szervek túlfeszítése ellen, amelyet pericardiumnak vagy pericardialis tasaknak neveznek (egyfajta héj, amely körülveszi a szervet). Két rétege van: a külső sűrű, erős kötőszövet, az úgynevezett pericardium rostos membránja, és a belső (serous pericardium).

Ezt követi egy vastag izomréteg - a szívizom és az endokardium (a szív vékony kötőszöveti belső bélése).

Így maga a szív három rétegből áll: epicardium, myocardium, endocardium. A szívizom összehúzódása pumpálja a vért a test edényein keresztül..

A bal kamra falai körülbelül háromszor nagyobbak, mint a jobb oldali falak! Ezt a tényt azzal magyarázzák, hogy a bal kamra feladata a vér bejutása a szisztémás keringésbe, ahol az ellenállás és a nyomás sokkal nagyobb, mint a kis kamrában..

Szív szelepek

Szívbillentyű készülék

A speciális szívszelepek lehetővé teszik a véráramlás folyamatos fenntartását a helyes (egyirányú) irányban. A szelepek egymás után nyílnak és záródnak, véreket engednek, majd elzárják az útját. Érdekes módon mind a négy szelep ugyanazon a síkon helyezkedik el..

A jobb pitvar és a jobb kamra között tricuspid (tricuspid) szelep található. Három speciális betegtájékoztatót tartalmaz, amelyek a jobb kamra összehúzódása során képesek megvédeni a vér visszaáramlását (regurgitációját)..

A mitrális szelep hasonló módon működik, csak a szív bal oldalán található, és kétfejű.

Az aorta szelep megakadályozza a vér visszaáramlását az aortából a bal kamrába. Érdekes, hogy amikor a bal kamra összehúzódik, az aorta szelep a rajta lévő vérnyomás következtében kinyílik, így az aortába költözik. Ezután a diasztolé (a szív ellazulása) alatt az artéria vérének áramlása hozzájárul a röpcédulák bezárásához.

Normális esetben az aorta szelepnek három cső van. A leggyakoribb veleszületett szív-rendellenesség a kétfejű aorta szelep. Ez a patológia az emberi populáció 2% -ában fordul elő..

A tüdő (pulmonalis) szelep a jobb kamra összehúzódásának idején lehetővé teszi a vér áramlását a tüdő törzsébe, és a diasztolé során nem engedi, hogy az ellenkező irányba áramoljon. Három szárnyból is áll..

Szíverek és koszorúér keringés

Az emberi szívnek táplálékra és oxigénre van szüksége, akárcsak bármely más szervhez. A szívet vérrel ellátó (tápláló) ereket koszorúérnak vagy koronálisnak nevezzük. Ezek az erek elágaznak az aorta tövétől.

A koszorúerek vérrel látják el a szívet, a szívkoszorúerek pedig oxigéntelen vért szállítanak. Azokat az artériákat, amelyek a szív felszínén vannak, epikardiálisnak nevezzük. A subendocardialis artériákat a szívizom mélyén elrejtett koszorúereknek nevezzük.

A szívizomból a vér kiáramlásának nagy része három szívvénán keresztül történik: nagy, közepes és kicsi. A koszorúrt képezve a jobb pitvarba áramlanak. A szív elülső és kisebb vénái a vért közvetlenül a jobb pitvarba juttatják.

A koszorúerek két típusba sorolhatók - jobbra és balra. Ez utóbbi az elülső interventricularis és a circumflex artériákból áll. A nagy szívvénák a szív hátsó, középső és kis vénáiba ágaznak.

Még a teljesen egészséges embereknek is megvannak a saját egyedi jellemzőik a koszorúér-keringésben. A valóságban az erek eltérően nézhetnek ki és helyezkedhetnek el, mint a képen látható..

A szív fejlődése (formája)?

Az összes testrendszer kialakulásához a magzatnak saját vérkeringésre van szüksége. Ezért a szív az első funkcionális szerv, amely megjelenik az emberi embrió testében, ez körülbelül a magzati fejlődés harmadik hetében történik..

Az embrió a legelején csak egy sejtgyűjtemény. De a terhesség folyamán egyre többé válnak, és most egyesülnek, programozott formákra hajtogatva. Kezdetben két cső képződik, amelyek aztán egybeolvadnak. Ez a cső összehajtása és lefelé rohanása hurokot képez - az elsődleges szívhurkot. Ez a hurok megelőzi az összes többi sejtet növekedésben, és gyorsan meghosszabbodik, majd jobbra (talán balra, ami azt jelenti, hogy a szív tükröződik) egy gyűrű formájában fekszik.

Tehát általában a fogantatást követő 22. napon a szív első összehúzódása következik be, és a 26. napra a magzatnak megvan a maga vérkeringése. A további fejlődés magában foglalja a szepták megjelenését, a szelepek kialakulását és a szívkamrák átalakítását. A válaszfalak az ötödik hétre, a szívbillentyűk pedig a kilencedik hétre alakulnak ki.

Érdekes módon a magzati szív egy hétköznapi felnőtt frekvenciáján kezd el verni - 75-80 ütés / perc. Ezután a hetedik hét elejére az impulzus körülbelül 165-185 ütés / perc, ami a maximális érték, majd lassulás következik. Az újszülött pulzusa 120-170 ütés / perc tartományban van.

Élettan - az emberi szív alapelve

Vizsgálja meg részletesebben a szív alapelveit és mintáit..

Szívműködés

Amikor egy felnőtt nyugodt, a szíve 70-80 ciklus / perc körüli. A pulzus egy üteme megegyezik egy szívciklussal. Ilyen összehúzódási sebesség mellett egy ciklus körülbelül 0,8 másodperc alatt teljesül. Ebből a pitvari összehúzódás ideje 0,1 másodperc, a kamráké 0,3 másodperc, a relaxációs periódus 0,4 másodperc.

A ciklus gyakoriságát a pulzus mozgatója állítja be (a szívizom területe, ahol a pulzusszámot szabályozó impulzusok jelentkeznek).

A következő fogalmakat különböztetjük meg:

  • Szisztolé (összehúzódás) - ez a fogalom szinte mindig a szív kamráinak összehúzódását jelenti, ami vérnyomáshoz vezet az artériás ágy mentén, és maximalizálja az artériákban a nyomást.
  • A diasztolé (szünet) az az időszak, amikor a szívizom relaxációs stádiumban van. Ebben a pillanatban a szívkamrák megtelnek vérrel, és az artériákban a nyomás csökken..

Így a vérnyomás mérésekor mindig két mutatót rögzítenek. Példaként vegyük a 110/70 számokat, mit jelentenek?

  • 110 a legfelső szám (szisztolés nyomás), vagyis ez az artériák vérnyomása a szívverés idején.
  • 70 az alsó szám (diasztolés nyomás), vagyis ez az artériák vérnyomása, amikor a szív ellazul.

A szívciklus egyszerű leírása:

Szívciklus (animáció)

A szív ellazulásának pillanatában a pitvarok és a kamrák (a nyitott szelepeken keresztül) megteltek vérrel.

  • A pitvarok szisztolája (összehúzódása) következik be, amely lehetővé teszi a vér teljes átjutását a pitvarokból a kamrákba. Az pitvarok összehúzódása a vénák beleesési helyétől kezdődik, ami garantálja a szájuk elsődleges összenyomódását és a vér képtelenségét visszafolyni a vénákba.
  • A pitvarok ellazulnak, és bezáródnak azok a szelepek, amelyek elválasztják a pitvarokat a kamráktól (tricuspidalis és mitralis). Kamrai szisztolé fordul elő.
  • A kamrai szisztolé a vért a bal kamrán keresztül az aortába, a jobb kamrán keresztül pedig a tüdőartériába tolja..
  • Ezt szünet (diasztólia) követi. A ciklus megismétlődik.
  • Hagyományosan az impulzus egy impulzusához két szívverés (két szisztolé) van - először a pitvarok, majd a kamrák. A kamrai szisztolán kívül van pitvari szisztolé is. Az pitvarok összehúzódása nincs értéke a szív mért munkájának, mivel ebben az esetben a relaxációs idő (diasztolé) elegendő a kamrák vérrel való megtöltéséhez. Amint azonban a szív gyakrabban kezd dobogni, a pitvari szisztolé döntő fontosságúvá válik - nélküle a kamráknak egyszerűen nem lenne idejük vérrel feltöltődni.

    Az artériákon keresztüli vérnyomást csak a kamrák összehúzódásával hajtják végre, ezeket a lökéseket-összehúzódásokat nevezzük pulzusnak.

    Szívizom

    A szívizom egyedisége abban rejlik, hogy képes az élettartam alatt folyamatosan végbemenő ritmikus, összehúzódásokkal váltakozó automatikus összehúzódásokra. A pitvarok és a kamrák myocardiumja (a szív középső izomrétege) elválik, ami lehetővé teszi számukra, hogy egymástól külön összehúzódjanak.

    A kardiomiociták a szív izomsejtjei, amelyek olyan speciális szerkezettel rendelkeznek, amely lehetővé teszi a gerjesztési hullám különösen koordinált továbbítását. Tehát kétféle kardiomiocita létezik:

    • hétköznapi dolgozók (a szívizomsejtek teljes számának 99% -a) - úgy tervezték, hogy vezető szív-kardiomiocitákon keresztül szívritmus-szabályozótól kapjanak.
    • speciális vezető (a szívizomsejtek teljes számának 1% -a) kardiomiociták - alkotják a vezető rendszert. Funkciójában idegsejtekre hasonlítanak..

    A vázizmokhoz hasonlóan a szívizmok is képesek kibővülni és hatékonyabban működni. Az állóképességű sportolók szívtérfogata akár 40% -kal is nagyobb lehet, mint az átlagembereké! A szív jótékony hipertrófiájáról beszélünk, amikor az megnyúlik és képes több vért pumpálni egy ütés alatt. Van még egy hipertrófia - úgynevezett "atlétikus szív" vagy "szarvasmarha-szív".

    A lényeg az, hogy egyes sportolók megnövelik az izom tömegét, és nem azt, hogy képes-e nyújtózni és nagy mennyiségű vért tolni. Ennek oka a felelőtlen képzési programok. Abszolút minden fizikai gyakorlatot, különösen az erőt, a kardió edzés alapján kell felépíteni. Ellenkező esetben a felkészületlen szíven végzett túlzott fizikai megterhelés myocardialis dystrophiát okoz, ami korai halálhoz vezet..

    Szívvezetési rendszer

    A szív vezető rendszere egy speciális formációk csoportja, amelyek nem szabványos izomrostokból állnak (kardiomiocitákat vezetnek), és mechanizmusként szolgálnak a szív összehangolt munkájának biztosítására..

    Impulzus út

    Ez a rendszer biztosítja a szív automatizmusát - a kardiomiocitákban született impulzusok gerjesztését külső inger nélkül. Egészséges szívben az impulzusok fő forrása a sinoatrialis (sinus) csomópont. Ő a vezető és blokkolja az impulzusokat az összes többi pacemakertől. De ha olyan betegség fordul elő, amely beteg sinus szindrómához vezet, akkor a szív más részei átveszik a funkcióját. Tehát az atrioventrikuláris csomópont (a második rend automatikus központja) és az Ő kötegje (a harmadik rendű AC) képesek aktiválódni, ha a sinus csomópont gyenge. Vannak esetek, amikor a másodlagos csomópontok fokozzák saját automatizmusukat és a sinus csomópont normál működése során.

    A sinuscsomó a jobb pitvar felső hátsó falában található, a felső vena cava szájának közvetlen közelében. Ez a csomópont kb. 80-100-szoros frekvenciájú impulzusokat indít el percenként..

    Az atrioventrikuláris csomópont (AV) az atrioventrikuláris septum jobb alsó pitvarában található. Ez a szeptum megakadályozza az impulzus terjedését közvetlenül a kamrákba, megkerülve az AV csomópontot. Ha a sinus csomópont meggyengült, akkor az atrioventrikuláris csomópont átveszi a funkcióját, és 40-60 ütés / perc frekvenciával kezdi el továbbítani az impulzusokat a szívizomba.

    Továbbá az atrioventrikuláris csomópont átmegy az His kötegébe (az atrioventrikuláris csomópont két lábra oszlik). A jobb láb a jobb kamrába rohan. A bal láb további két részre oszlik.

    A bal oldali kötegággal kapcsolatos helyzet nem teljesen ismert. Úgy gondolják, hogy a bal láb az elülső ág rostjaival a bal kamra elülső és oldalsó falához rohan, a hátsó ág pedig a bal kamra hátsó falához és az oldalsó fal alsó részeihez juttatja a szálakat..

    A sinus csomópont gyengesége és az atrioventrikuláris csomó blokádja esetén a His köteg képes impulzusokat létrehozni 30-40 percenkénti sebességgel.

    A vezető rendszer elmélyül, és további elágazásokká válik kisebb ágakká, amelyek végül Purkinje-rostokká válnak, amelyek behatolnak a teljes szívizomba és átviteli mechanizmusként szolgálnak a kamrai izmok összehúzódásához. A Purkinje szálak képesek impulzusokat kezdeményezni 15-20 percenként.

    A kivételesen kiképzett sportolók normál nyugalmi pulzusát elérhetik a legalacsonyabb pulzusszámig (28 ütés / perc)! Az átlagember számára azonban, még ha nagyon aktív életmódot folytat is, az 50 ütés / perc alatti pulzus a bradycardia jele lehet. Ha ilyen alacsony a pulzusod, akkor kardiológusnak kell megvizsgálnia.

    Szívverés

    Az újszülött pulzusa percenként 120 körüli lehet. Felnövekedésével egy hétköznapi ember pulzusa 60-100 ütés / perc tartományban stabilizálódik. A jól képzett sportolók (jól képzett kardiovaszkuláris és légzőrendszerrel rendelkező emberekről beszélünk) pulzusuk percenként 40-100 ütés.

    A szív ritmusát az idegrendszer irányítja - a szimpatikus fokozza az összehúzódásokat, a paraszimpatikus pedig gyengül.

    A szív aktivitása bizonyos mértékben a vér kalcium- és káliumion-tartalmától függ. Más biológiailag aktív anyagok is hozzájárulnak a szívritmus szabályozásához. A szívünk gyakrabban kezd dobogni az endorfinok és a kedvenc zenéje hallgatásakor vagy csókolózáskor felszabaduló hormonok hatására.

    Ezenkívül az endokrin rendszer képes jelentősen befolyásolni a pulzusszámot - mind az összehúzódások gyakoriságát, mind azok erejét. Például a mellékvese felszabadulása a jól ismert adrenalin által a pulzusszám növekedését okozza. Az ellentétes hormon az acetilkolin..

    Szívhangok

    A szívbetegségek diagnosztizálásának egyik legegyszerűbb módja a mellkas sztetoszkóppal történő hallgatása (auszkultáció).

    Egészséges szívben, normál hallgatózás mellett, csak két szívhang hallható - ezeket S1-nek és S2-nek hívják:

    • S1 - az a hang, amely akkor hallatszik, amikor az atrioventrikuláris (mitrális és tricuspid) szelepek zárva vannak a kamrák szisztolája (összehúzódása) során.
    • S2 - az a hang, amelyet akkor hallunk, amikor a szemilunáris (aorta- és pulmonalis) szelepek bezárulnak a kamrák diasztoléja (relaxációja) alatt.

    Mindegyik hangnak két összetevője van, de az emberi fül számára összeolvadnak a közöttük lévő nagyon kicsi időintervallum miatt. Ha normál auszkultációs körülmények között további hangok hallhatóvá válnak, akkor ez a szív- és érrendszer betegségére utalhat..

    Előfordulhat, hogy a szívben további rendellenes hangok, úgynevezett szívzúgások hallhatók. Általános szabály, hogy a zörejek jelenléte valamiféle szívpatológiát jelez. Például egy zörej okozhatja a vér ellentétes irányba való visszatérését (regurgitáció) a szelep meghibásodása vagy károsodása miatt. A zaj azonban nem mindig a betegség tünete. A szívben megjelenő további hangok megjelenésének okainak tisztázása érdekében érdemes echokardiográfiát (a szív ultrahangját) elvégezni.

    Szívbetegség

    Nem meglepő, hogy a szív- és érrendszeri betegségek száma növekszik a világon. A szív egy összetett szerv, amely valójában csak a szívverések közötti időközönként nyugszik (ha pihenésnek hívhatjuk). Bármely összetett és folyamatosan működő mechanizmus önmagában a leggondosabb hozzáállást és állandó megelőzést igényli..

    Képzelje csak el, milyen szörnyű teher esik a szívre, tekintettel életmódunkra és rossz minőségű bőséges táplálkozásunkra. Érdekes módon a szív- és érrendszeri betegségek miatt bekövetkezett halálozások magasak a magas jövedelmű országokban is..

    A gazdag országok lakossága által elfogyasztott óriási mennyiségű élelmiszer és a végtelen pénzkeresés, valamint az ezzel járó stressz tönkreteszi a szívünket. A szív- és érrendszeri betegségek terjedésének másik oka a fizikai inaktivitás - katasztrofálisan alacsony fizikai aktivitás, amely az egész testet rombolja. Vagy éppen ellenkezőleg, egy írástudatlan szenvedély a nehéz testmozgás iránt, amely gyakran a szívbetegség hátterében jelentkezik, amelynek jelenlétét az emberek nem is sejtik, és az "egészségjavító" tevékenységek során sikerül meghalniuk.

    Életmód és a szív egészsége

    A fő tényezők, amelyek növelik a szív- és érrendszeri betegségek kialakulásának kockázatát, a következők:

    • Elhízottság.
    • Magas vérnyomás.
    • A vér koleszterinszintjének emelkedése.
    • Fizikai tétlenség vagy túlzott testmozgás.
    • Rengeteg rossz minőségű étel.
    • Elnyomott érzelmi állapot és stressz.

    Tegye életének fordulópontjává ennek a nagy cikknek az elolvasását - hagyjon fel a rossz szokásokkal és változtasson az életmódján.

    Az emberi szív anatómiája

    A szív az emberi test egyik legromantikusabb és legérzékibb szerve. Számos kultúrában a lélek székhelyének, a szeretet és a szeretet eredetének a helyének tekintik. Anatómiai szempontból azonban a kép prózaibbnak tűnik. Az egészséges szív erős izmos szerv, amely akkora, mint a tulajdonos ökle. A szívizom munkája egy pillanatra sem áll le az ember születésének pillanatától és haláláig. A vér pumpálásával a szív oxigént juttat minden szervhez és szövethez, segít eltávolítani a bomlástermékeket és ellátja a test tisztító funkcióinak egy részét. Beszéljünk ennek a csodálatos szervnek az anatómiai felépítéséről.

    Az emberi szív anatómiája: Történelmi orvosi kirándulás

    A kardiológiát - a szív és az erek szerkezetét tanulmányozó tudományt - az anatómia külön ágaként emelték ki még 1628-ban, amikor Harvey azonosította és bemutatta az emberi vérkeringés törvényeit az orvosi közösségnek. Bemutatta, hogy a szív, mint egy szivattyú, szigorúan meghatározott irányban tolja a vért az érágy mentén, ellátva a szerveket tápanyagokkal és oxigénnel..

    A szív az ember mellkasi régiójában található, kissé balra a központi tengelytől. A szerv alakja a test felépítésének, életkorának, alkatának, nemének és egyéb tényezőktől függően változhat. Tehát vaskos, alacsony embereknél a szív kerekebb, mint a vékony és magas embereké. Úgy gondolják, hogy alakja nagyjából egybeesik a szorosan összeszorított ököl kerületével, súlya a nők 210 grammjától a férfiaknál 380 grammig terjed..

    A szívizom által pumpált vér mennyisége naponta körülbelül 7-10 ezer liter, és ezt a munkát folyamatosan végzik! A vér mennyisége a fizikai és pszichológiai állapotoktól függően változhat. Stressz alatt, amikor a testnek oxigénre van szüksége, a szív terhelése jelentősen megnő: ilyen pillanatokban képes akár 30 liter / perc sebességgel mozgatni a vért, helyreállítva a test tartalékait. Ennek ellenére a szerv nem képes állandóan kopás céljából dolgozni: pihenő pillanatban a vér áramlása percenként 5 literre lelassul, a szívet alkotó izomsejtek pedig pihennek és helyreállnak.

    A szív felépítése: szövet- és sejtanatómia

    A szívet izomszervnek minősítik, azonban téves azt hinni, hogy csak izomrostokból áll. A szív falának három rétege van, amelyek mindegyikének megvan a maga sajátossága:

    1. Az endokardium a kamrák felületét bélelő belső héj. A rugalmas kötő- és simaizomsejtek kiegyensúlyozott szimbiózisa képviseli. Szinte lehetetlen körvonalazni az endocardium világos határait: ha vékonyabbá válik, simán átjut a szomszédos erekbe, és az pitvarok különösen vékony helyein közvetlenül együtt növekszik az epicardiummal, megkerülve a középső, legnagyobb kiterjedésű réteget - a myocardiumot..

    2. A szívizom a szív izomváza. A harántcsíkolt izomszövet több rétege összekapcsolódik oly módon, hogy gyorsan és céltudatosan reagáljon az egy területen fellépő, az egész szerven áthaladó izgalomra, a vért az érágyba tolva. Az izomsejtek mellett a szívizom P-sejteket tartalmaz, amelyek képesek továbbítani az idegi impulzusokat. A szívizom fejlettségi foka bizonyos területeken a hozzá rendelt funkciók mennyiségétől függ. Például a pitvari régióban a szívizom sokkal vékonyabb, mint a kamrai.

    Ugyanebben a rétegben található a gyűrűs fibrosus, amely anatómiailag elválasztja a pitvarokat és a kamrákat. Ez a funkció lehetővé teszi a kamrák felváltva összehúzódását, szigorúan meghatározott irányba tolva a vért..

    3. Epicardium - a szívfal felszínes rétege. A hám- és kötőszövet által alkotott serózus membrán közbenső kapcsolat a szerv és a szívzsák - a szívburok között. A vékony, átlátszó szerkezet megvédi a szívet a fokozott súrlódástól, és megkönnyíti az izomréteg kölcsönhatását a szomszédos szövetekkel.

    Kívül a szívet a szívburok veszi körül - egy nyálkahártya, amelyet egyébként szívtáskának hívnak. Két lapból áll - a külső a membrán felé néz, a belső pedig szorosan illeszkedik a szívhez. Közöttük van egy folyadékkal töltött üreg, amely csökkenti a súrlódást a szívverés során..

    Kamrák és szelepek

    A szívüreg 4 szakaszra oszlik:

    • a jobb pitvar és a kamra vénás vérrel tele;
    • bal pitvar és kamra artériás vérrel.

    A jobb és a bal felét sűrű septum választja el, amely megakadályozza a kétféle vér keveredését és fenntartja az egyoldalú véráramlást. Igaz, ennek a tulajdonságnak egyetlen apró kivétele van: az anyaméhben lévő gyermekeknél a szeptumban van egy ovális ablak, amelyen keresztül a vér összekeveredik a szívüregben. Normális esetben születéskor ez a lyuk benőtt, és a szív- és érrendszer úgy működik, mint egy felnőttnél. Az ovális ablak hiányos bezárása súlyos patológiának számít és sebészeti beavatkozást igényel.

    A pitvarok és a kamrák között a mitrális és a tricuspid szelepek párban helyezkednek el, amelyeket az ínszálak tartanak a helyükön. A szinkron szelep-összehúzódás lehetővé teszi az egyoldalú véráramlást, megakadályozva az artériás és a vénás áramlás keveredését.

    A véráram legnagyobb artériája, az aorta a bal kamrából indul el, a tüdőtörzs pedig a jobb kamrából származik. Annak érdekében, hogy a vér kizárólag egy irányba mozoghasson, a szív és az artériák között félhold alakú szelepek vannak.

    A véráramlást a vénás hálózat biztosítja. Az alsó vena cava és egy felső vena cava beáramlik a jobb pitvarba, a tüdő, ill..

    Az emberi szív anatómiai jellemzői

    Mivel más szervek oxigén- és tápanyagellátása közvetlenül függ a szív normális működésétől, ideális esetben alkalmazkodnia kell a változó környezeti feltételekhez, más frekvenciatartományban kell működnie. Ilyen változékonyság lehetséges a szívizom anatómiai és fiziológiai jellemzői miatt:

    1. Az autonómia a központi idegrendszertől való teljes függetlenséget jelenti. A szív az általa előállított impulzusoktól összehúzódik, így a központi idegrendszer munkája semmilyen módon nem befolyásolja a pulzusszámot.
    2. A vezetés abból áll, hogy a kialakult impulzus a lánc mentén átjut a szív más részeire és sejtjeire.
    3. Az izgalom azonnali választ jelent a testben és azon kívüli változásokra.
    4. A kontraktilitás, vagyis a szálak összehúzódásának ereje, közvetlenül arányos a hosszukkal.
    5. Refrakteresség - az az időszak, amely alatt a szívizomszövet nem ingerelhető.

    A rendszer bármely meghibásodása a pulzus éles és ellenőrizetlen változásához, a szívösszehúzódások aszinkroniájához vezethet a fibrillációig és a halálig..

    A szív fázisai

    Annak érdekében, hogy a vért az ereken keresztül folyamatosan mozgassa, a szívnek összehúzódnia kell. Az összehúzódás szakasza alapján a szívciklusnak 3 fázisa van:

    • Pitvari szisztolé, amelynek során a vér a pitvarokból a kamrákba áramlik. Annak érdekében, hogy ne zavarja az áramot, a mitrális és a tricuspid szelepek ebben a pillanatban kinyílnak, a félholdak pedig éppen ellenkezőleg, bezáródnak.
    • A kamrai szisztolé magában foglalja a vér mozgását az artériák felé a nyitott szemhéj szelepeken keresztül. Ebben az esetben a levélszelepek zárva vannak.
    • A diasztolé magában foglalja a pitvarok vénás vérrel történő kitöltését nyitott szórólap-szelepeken keresztül.

    Minden szívverés körülbelül egy másodpercig tart, de aktív fizikai munkával vagy stressz alatt az impulzusok sebessége nő a diasztolé időtartamának csökkentésével. A jó pihenés, alvás vagy meditáció során a szívverés lassul, a diasztolé hosszabbá válik, így a test aktívabban megtisztul a metabolitoktól.

    A koszorúér-rendszer anatómiája

    A hozzárendelt funkciók teljes ellátásához a szívnek nemcsak a vért pumpálnia kell a testben, hanem tápanyagokat is magából a véráramból kell kapnia. Az aorta rendszert, amely vért juttat a szív izomrostjaihoz, koszorúér-rendszernek nevezzük, és két artériát foglal magában - balra és jobbra. Mindkettő eltávolodik az aortától, és az ellenkező irányba haladva telíti a szívsejteket hasznos anyagokkal és a vérben lévő oxigénnel.

    A szívizom vezetési rendszere

    A szív folyamatos összehúzódása autonóm munkája révén valósul meg. Az izomrostok összehúzódásának folyamatát kiváltó elektromos impulzus 50–80 impulzus / perc frekvenciával jön létre a jobb pitvar sinuscsomópontjában. Az atrioventrikuláris csomópont idegrostjai mentén továbbjut az interventricularis septumhoz, majd nagy kötegek (His lábai) mentén a kamrák faláig, majd a Purkinje kisebb idegrostjaihoz jutnak. Ennek köszönhetően a szívizom fokozatosan összehúzódhat, a vért a belső üregből az érágyba tolja..

    Életmód és a szív egészsége

    Az egész szervezet állapota közvetlenül függ a szív teljes működésétől, ezért minden épeszű ember célja a szív- és érrendszer egészségének fenntartása. Annak érdekében, hogy ne álljon szemben a szívbetegségekkel, meg kell próbálnia kizárni vagy legalább minimalizálni a provokáló tényezőket:

    • túlsúlyosnak lenni;
    • dohányzás, alkoholos és kábítószerek fogyasztása;
    • irracionális étrend, zsíros, sült, sós ételek visszaélése;
    • magas koleszterinszint;
    • inaktív életmód;
    • szuper-intenzív fizikai aktivitás;
    • tartós stressz, idegi kimerültség és túlterhelés állapota.

    Kicsit többet megtudva az emberi szív anatómiájáról, próbáljon erőfeszítéseket tenni önmagára a pusztító szokások feladásával. Változtassa jobbá az életét, és akkor a szíve úgy fog működni, mint egy óra.

    Az emberi szív anatómiája

    A szív, a cor, egy üreges izomszerv, amely vért kap a belé ömlő vénás törzsekből, és a vért az artériás rendszerbe vezeti. A szívüreg 4 kamrára oszlik: 2 pitvarra és 2 kamrára.

    A bal pitvar és a bal kamra együtt alkotja a bal vagy artériás szívet a benne lévő vér tulajdonságai révén; a jobb pitvar és a jobb kamra alkotja a jobb vagy vénás szívet. A szívkamrák falainak összehúzódását szisztolának, relaxációjukat diasztolének nevezzük.

    A szív kissé lapított kúp alakú. Megkülönbözteti a csúcsot, a csúcsot, az alapot, az alapot, az anteroposterior és az alsó felületet és a két élt - jobb és bal oldal, elválasztva ezeket a felületeket.

    A szív lekerekített csúcsa, az apex cordis lefelé, előre és balra néz, és az ötödik bordaközi helyet a középvonaltól balra 8 - 9 cm távolságra éri; a szív csúcsát teljes egészében a bal kamra képezi. Az alap, a cordis, felfelé, hátul és jobbra néz.

    A pitvarok alkotják, és elöl - az aorta és a tüdő törzse. A pitvarok által alkotott négyszög jobb felső sarkában van egy hely - a felső vena cava bejárata, az alsó részen - az alsó vena cava; most balra vannak a két jobb tüdő vénájának belépési pontjai, az alap bal szélén - két bal tüdő véna.

    A szív elülső vagy sternocostalis felülete, a facies sternocostalis, elöl, felfelé és balra néz, és a szegycsont teste és a bordák porcja mögött fekszik a III-tól VI-ig. Koronális barázda, sulcus coronarius, amely keresztirányban halad a szív hossztengelyéhez és elválasztja a pitvarokat a kamráktól, a szív a pitvarok által alkotott felső szakaszra és a kamrák által alkotott nagyobb alsó szakaszra oszlik..

    Az elülső hosszanti horony, a sulcus interventricularis anterior, a facies sternocostalis mentén haladva halad a kamrák közötti határ mentén, az elülső felület nagy részét a jobb kamra, kisebb részét a bal.

    Az alsó vagy rekeszizmos felület, a facies diaphragmatica szomszédos a rekeszizommal, az ínközépével. A hátsó hosszanti horony, a sulcus interventricularis posterior, áthalad rajta, amely elválasztja a (nagy) bal kamra felületét a jobb (kisebb) felszínétől..

    A szív elülső és hátsó interventricularis barázdái alsó végükkel egyesülnek egymással, és a szív jobb szélén, közvetlenül a szív csúcsától jobbra kialakulnak, egy szív bemetszés, incisura apicis cordis.

    A szív jobb és bal széle egyenlőtlen: a jobb élesebb; a bal széle lekerekített, tompa a bal kamrai fal nagyobb vastagsága miatt.

    Úgy gondolják, hogy a szív mérete megegyezik a megfelelő egyén öklével. Átlagos méretei: hossza 12-13 cm, maximális átmérője 9-10,5 cm, anteroposterior mérete 6-7 cm testsúly).

    A szív anatómiája

    Jó napot! Ma elemezzük a keringési rendszer legfontosabb szervének anatómiáját. Természetesen a szívről szól.

    A szív külső szerkezete

    A szív (cor) csonka kúp alakú, amely az elülső mediastinumban található, csúcsával balra és lefelé. Ennek a kúpnak a csúcsát anatómiailag apex cordis-nak hívják, így nem fog összezavarodni. Nézze meg az illusztrációt, és ne feledje - a szív teteje az alsó, nem pedig a teteje..

    A szív felső részét base cordis-nak nevezzük. Megmutathatja a szív alapját a diákon, ha egyszerűen felkutatja azt a területet, ahová a szív összes fő ereje be- és kifolyik. Ez a vonal meglehetősen önkényes - általában az alsó vena cava nyílásán keresztül húzódik.

    A szívnek négy felülete van:

    • Diafragmatikus felület (facies diaphragmatica). Alul található, a szívnek ez a felülete a membrán felé irányul;
    • Sternocostalis felület (facies sternocostalis). Ez a szív elülső felülete, a szegycsont és a bordák felé néz;
    • Tüdőfelület (facies pulmonalis). A szívnek két tüdőfelülete van - jobb és bal.

    Ezen a képen a szívet a tüdővel kombinálva látjuk. Itt van a sternocostalis, vagyis a szív elülső felülete.

    A szegycsont-part felszínének tövében apró kinövések vannak. Ezek a jobb és a bal fülkagylók (auricula dextra / auricula sinistra). A jobb fülét zöld színnel emeltem ki, a balat pedig kék színnel.

    Szívkamrák

    A szív üreges (azaz belül üres) szerv. Ez egy sűrű sűrű izomszövet négy üreggel:

    • Jobb pitvar (atrium dexter);
    • Jobb kamra (ventriculus dexter);
    • Bal pitvar (pitvari baljóslatú);
    • Bal kamra (ventriculus sinister).

    Ezeket az üregeket szívkamráknak is nevezik. Az embernek négy ürege van a szívében, vagyis négy kamrája van. Ezért mondják, hogy az embernek négykamrás szíve van..

    A frontális síkban bevágott szíven sárga színnel emeltem ki a jobb pitvar, zölden a bal pitvart, kékkel a jobb kamrát és feketével a bal kamrát..

    Jobb pitvar

    A jobb pitvar "piszkos" (azaz szén-dioxiddal és gyenge oxigénnel telített) vért gyűjt az egész testből. A felső (barna) és az alsó (sárga) teljes vénák a jobb pitvarba áramlanak, amelyek szén-dioxiddal gyűjtenek vért az egész testből, valamint a szív nagy vénája (zöld), amely a vért szén-dioxiddal gyűjti össze a szívből. Ennek megfelelően három lyuk nyílik a jobb pitvarba.

    Interventricularis septum van a jobb és a bal pitvar között. Ovális mélyedést tartalmaz - egy kis ovális mélyedést, egy ovális fossa (fossa ovalis). Az embrionális periódusban ovális lyuk (foramen ovale cordis) volt ennek a depressziónak a helyén. Normális esetben a foramen ovale a születése után azonnal növekedni kezd. Ezen az ábrán az ovális fossa kék színnel van kiemelve:

    A jobb pitvar a jobb kamrával kommunikál a jobb atrioventrikuláris nyíláson keresztül (ostium atrioventriculare dextrum). Az ezen a nyíláson keresztüli véráramlást tricuspid szelep szabályozza.

    Jobb kamra

    Ez a szívüreg "piszkos" vért kap a bal pitvarból, és a tüdőbe irányítja, hogy megtisztítsa a szén-dioxidtól és oxigénnel gazdagítsa. Ennek megfelelően a jobb kamra csatlakozik a tüdő törzséhez, amelyen keresztül a vér a tüdőbe kerül..

    A tricuspid szelepet, amelyet le kell zárni a vér áramlása során a tüdő törzsébe, ínszálakkal rögzítik a papilláris izmokhoz. Ezen izmok összehúzódása és ellazulása vezérli a tricuspidális szelep munkáját..

    A papilláris izmokat zöld színnel, az ínszálakat pedig sárga színnel emelik ki:

    Bal pitvar

    A szív ezen része összegyűjti a "legtisztább" vért. A bal pitvarba áramlik a friss vér, amelyet a kis (tüdő) körben előre megtisztítanak a szén-dioxidtól és oxigénnel telített.

    Ezért négy tüdővénák áramlanak a bal pitvarba - mindegyik tüdőből kettő. A képen láthatja ezeket a lyukakat - zöld színnel emeltem ki őket. Ne feledje, hogy az artériás oxigénnel dúsított vér áthalad a pulmonalis vénákon..

    A bal pitvar a bal kamrával a bal atrioventrikuláris nyíláson (ostium atrioventriculare sinistrum) keresztül kommunikál. Az ezen a nyíláson keresztüli véráramlást a mitralis szelep szabályozza..

    Bal kamra

    A bal kamra megkezdi a szisztémás keringést. Amikor a bal kamra vért pumpál az aortába, akkor azt a mitrális szelep izolálja a bal pitvarból. A tricuspidis szelephez hasonlóan a mitrális szelepet a papilláris izmok vezérlik (zöld színnel kiemelve), amelyek ínhuzalok segítségével vannak összekötve vele..

    Észreveheti a bal kamra nagyon erős izomfalát. Ez annak a ténynek köszönhető, hogy a bal kamrának erőteljes véráramot kell pumpálnia, amelyet nemcsak a gravitáció irányában (a gyomorba és a lábakba), hanem a gravitációs erővel szemben is - vagyis felfelé, a nyakig és a fej felé kell küldeni.

    Képzelje el, a zsiráfok keringési rendszere olyan ravaszul van elrendezve, amelyben a szívnek a vért a teljes nyak magasságáig a fejig kell pumpálnia?

    Septa és a szív barázdái

    A bal és a jobb kamrát vastag izmos fal választja el. Ezt a falat septum interventriculare-nek hívják.

    Az interventricularis septum a szív belsejében helyezkedik el. De elhelyezkedése megfelel az interventricularis barázdáknak, amelyeket kívülről láthat. A szív sternocostalis felületén található az elülső interventricularis barázda (sulcus interventricularis anterior). Ezt a barázdát zöld színnel emeltem ki a képen..

    A szív rekeszizmos felületén a hátsó interventricularis barázda található (sulcus interventricularis posterior). Zöld színnel van kiemelve, és a 13 szám jelzi.

    A bal és a jobb pitvart pitvari septum választja el (septum interatriale), amelyet szintén zöld színnel emelnek ki.

    A szív külső részétől a kamrákat egy koronális barázda (sulcus coronarius) választja el a pitvaroktól. Az alábbi képen a rekeszizom, vagyis a szív hátsó részén látható coronal sulcus látható. Ez a horony fontos mérföldkő a szív nagy erének meghatározásában, amelyről tovább fogunk beszélni..

    Vérkeringési körök

    Nagy

    Egy erős, nagy bal kamra artériás vért indít az aortába - itt kezdődik a szisztémás keringés. Így néz ki: a vért a bal kamra dobja ki az aortába, amely elágazik a szerv artériáiba. Ezután az erek kaliberje egyre kisebb lesz a kapillárisokhoz illeszkedő legkisebb arteriolákig.

    A kapillárisokban gázcsere zajlik, és a vér, már széndioxiddal és bomlástermékekkel telített, a vénákon keresztül visszaszalad a szívbe. A kapillárisok után ezek kicsi venulák, majd nagyobb szervi vénák, amelyek az alsó vena cava-ba (a törzs és az alsó végtagok tekintetében) és a felső vena cava-ba (a fej, a nyak és a felső végtagok esetében) áramlanak..

    Ebben az ábrán a szisztémás keringést kiteljesítő anatómiai képződményeket emeltem ki. A felső vena cava (zöld, 1. szám) és az alsó vena cava (narancs, 3. szám) a jobb pitvarba áramlik (bíborvörös, 2. szám). Azt a helyet, ahol a vena cava beáramlik a jobb pitvarba, sinus venarum cavarumnak nevezzük..

    Így a nagy kör a bal kamrával kezdődik és a jobb pitvussal végződik:

    Bal kamra → Aorta → Nagy fő artériák → Szervi artériák → Kis arteriolák → Kapillárisok (gázcserezóna) → Kis venulák → Szervi vénák → Alsó vena cava / Superior vena cava → Jobb pitvar.

    Amikor elkészítettem ezt a cikket, találtam egy diagramot, amelyet a második évben rajzoltam meg. Valószínűleg tisztábban fogja megmutatni a szisztémás keringést:

    Kicsi

    A kis (tüdő) keringés a jobb kamrával kezdődik, amely vénás vért küld a tüdő törzsébe. Vénás vért (vigyázzon, ez itt vénás vér!) A tüdőtörzs mentén küldik, amely két tüdőartériára oszlik. A tüdő lebenyei és szegmensei szerint a pulmonalis artériák (ne feledjük, hogy vénás vért szállítanak) lebenyes, szegmentális és szubregmentális tüdőartériákra oszlanak. Végül a szubregmentális tüdőartériák ágai szétesnek az alveolusokat megközelítő kapillárisokká.

    A kapillárisokban ismét előfordul a gázcsere. Szén-dioxiddal telített vénás vér megszabadul ettől a ballaszttól, és telítődik életet adó oxigénnel. Amikor a vér oxigénnel telített, artériássá válik. A telítettség után a friss artériás vér átfut a pulmonalis venulákon, a szubregmentális és a szegmentális vénákon, amelyek a nagy tüdővénákba áramlanak. A pulmonalis vénák a bal pitvarba áramlanak.

    Itt emeltem ki a tüdő keringésének kezdetét - a jobb kamra ürege (sárga) és a tüdő törzse (zöld), amely elhagyja a szívet, és a jobb és a bal tüdőartériákra oszlik..

    Ebben a diagramban láthatja a bal pitvar üregébe áramló pulmonalis vénákat (zöld) (lila) - ezekkel az anatómiai szerkezetekkel végződik a pulmonalis keringés.

    A vérkeringés kis körének sémája:

    Jobb kamra → Pulmonalis törzs → Pulmonalis artériák (jobb és bal) vénás vérrel artériás vér) → Pulmonalis vénák (artériás vérrel) → Bal pitvar

    Szív szelepek

    A bal pitvartól a jobb pitvart, valamint a bal oldali jobb kamrát különválasztják el. Normális esetben egy felnőttnél a válaszfalaknak szilárdaknak kell lenniük, közöttük nem lehet lyuk.

    De a kamra és az átrium között mindkét oldalon nyílásnak kell lennie. Ha a szív bal feléről beszélünk, akkor ez a bal szív- és gyomornyílás (ostium atrioventriculare sinistrum). Jobb oldalon a kamrát és az átriumot a jobb atrioventrikuláris nyílás választja el (ostium atrioventriculare dextrum).

    A szelepek a furatok széle mentén helyezkednek el. Ezek okos eszközök, amelyek megakadályozzák a vér visszaáramlását. Amikor az átriumnak a vért a kamrába kell irányítania, a szelep nyitva van. Miután megtörtént a vér átriumból való átjutása a kamrába, a szelepnek szorosan le kell záródnia, hogy a vér ne áramoljon vissza az átriumba.

    A szelepet röpcédulák alkotják, amelyek az endothelium kétszeres levelei - a szív belső bélése. Az ínszálak kinyúlnak a szelepektől és a papilláris izmokhoz kapcsolódnak. Ezek az izmok vezérlik a szelepek nyitását és zárását..

    Tricuspid szelep (valva tricispidalis)

    Ez a szelep a jobb kamra és a jobb pitvar között helyezkedik el. Három lemez alkotja, amelyekhez ínvarratok kapcsolódnak. Az ínszálak maguk kapcsolódnak a jobb kamrában elhelyezkedő papilláris izmokhoz.

    A frontális síkban lévő vágáson nem láthatunk három műanyagot, de jól láthatjuk a papilláris izmokat (feketével körözve) és az ínszálakat, amelyek a szeleplemezekhez vannak rögzítve. A szelep által elválasztott üregek is jól láthatók - a jobb pitvar és a jobb kamra.

    Vízszintes vágásban három tricuspid szelepes szórólap jelenik meg előttünk teljes dicsőségében:

    Mitralis szelep (valva atrioventricularis sinistra)

    A mitrális szelep szabályozza a vér áramlását a bal pitvar és a bal kamra között. A szelep két lemezből áll, amelyeket az előző esethez hasonlóan a papilláris izmok irányítanak ínszálakon keresztül. Felhívjuk figyelmét, hogy a mitrális szelep az egyetlen szívbillentyű, amely két csőrből áll.

    A mitrális szelep zöld színnel, a papilláris izmok pedig fekete színnel vannak felvázolva:

    Nézzük meg a mitrális szelepet vízszintes síkban. Még egyszer megjegyzem - csak ez a szelep két lemezből áll:

    Tüdőszelep (valva trunci pulmonalis)

    A pulmonalis szelepet gyakran pulmonalis szelepnek vagy pulmonalis szelepnek is nevezik. Ezek szinonimák. A szelepet három fedél alkotja, amelyek a tüdőtörzshöz kapcsolódnak abban a pontban, ahol elhagyja a jobb kamrát.

    Könnyen megtalálja a pulmonalis szelepet, ha tudja, hogy a pulmonalis törzs a jobb kamrából indul:

    Vízszintes szakaszon a pulmonalis szelepet is könnyen megtalálja, ha tudja, hogy az mindig az aorta szelep előtt van. A pulmonalis szelep általában az összes szívszelep közül a legtöbb elülső helyet foglalja el. Könnyen megtalálhatjuk magát a tüdőszelepet és az azt alkotó három szárnyat:

    Aorta szelep (valva aortae)

    Már mondtuk, hogy az erőteljes bal kamra friss, oxigénnel telített vér egy részét az aortába és tovább továbbítja egy nagy kör mentén. Az aorta szelep elválasztja a bal kamrát és az aortát. Három lemez alkotja, amelyek a szálas gyűrűhöz kapcsolódnak. Ez a gyűrű az aorta és a bal kamra találkozásánál helyezkedik el.

    Figyelembe véve a szívet vízszintes szakaszban, ne felejtsük el, hogy a pulmonalis szelep elöl, az aorta szelep pedig mögötte van. Az aorta szelepet ebből a szempontból az összes többi szelep veszi körül:

    A szív rétegei

    1. Pericardium (szívburok). Ez egy sűrű kötőszöveti membrán, amely megbízhatóan takarja a szívet.

    A szívburok kétrétegű membrán, rostos (külső) és serózus (belső) rétegekből áll. A serózus réteg két lemezre is hasad - parietális és zsigeri. A zsigeri lemeznek különleges neve van - epicardium.

    Számos mérvadó forrásban láthatja, hogy az epicardium az első szívburok..

    2. Miokardium (szívizom). A szív tényleges izomszövete. Ez a szív legerősebb rétege. A legfejlettebb és legvastagabb szívizom képezi a bal kamra falát, amint azt a cikk elején már tárgyaltuk.

    Nézze meg, hogyan különbözik a szívizom vastagsága a pitvarokban (a bal pitvust használva példaként) és a kamrákban (a bal kamrát használva példaként).

    3. Endokardium (endokardium). Ez egy vékony lemez, amely a szív teljes belső terét behatárolja. Az endocardiumot az endothelium alkotja - egy speciális szövet, amely hámsejtekből áll, amelyek szorosan szomszédosak egymással. Az endothelium patológiájával jár együtt az ateroszklerózis, a magas vérnyomás, a szívinfarktus és más félelmetes szív- és érrendszeri betegségek kialakulása..

    Szív topográfia

    Emlékszel arra, hogy a mellkas topográfiájáról szóló utolsó leckében azt mondtam, hogy a topográfiai vonalak ismerete nélkül egyáltalán nem fogsz tudni mindent megtudni a mellüreggel kapcsolatos mindenről? Megtanultad őket? Remek, karolja fel magát a tudásával, most mi is felhasználjuk.

    Tehát különböztesse meg az abszolút szívtompaság és a relatív szívtompaság határait.

    Ez a furcsa név abból származik, hogy ha megérinti (az orvostudományban úgy hívják, hogy "ütőhangszerek") a mellkasát, azon a helyen, ahol a szív található, tompa hangot fog hallani. Ütögetve a tüdő hangosabb, mint a szív, ahonnan a kifejezés származik..

    A relatív tompaság a szív anatómiai (valódi) határa. A boncolás során meghatározhatjuk a relatív tompaság határait. Normális esetben a szívet tüdő borítja, így a viszonylagos szívtompaság határai csak a készítményen láthatók.

    Az abszolút szívtompaság a szív azon részének határa, amelyet a tüdő nem takar. Ahogy el lehet képzelni, az abszolút szív tompa határai kisebbek lesznek, mint ugyanazon a betegen a relatív szív tompa határai..

    Mivel most éppen az anatómiát vizsgáljuk, úgy döntöttem, hogy csak a rokonról, vagyis a szív valódi határairól beszélek. A vérképző rendszer anatómiájáról szóló cikk után általában megpróbálom követni a cikkek méretét.

    A szív viszonylagos tompaságának határai (a szív valódi határai)

    • A szív csúcsa (1): 5. bordaközi tér, 1-1,5 cm-es mediálisan a bal oldali midclavicularis vonalhoz (zöld színnel kiemelve);
    • A szív bal oldali határa (2): egy vonal, amely a harmadik borda metszéspontjától a parasternalis vonallal (sárga) a szív csúcsáig húzódik. A szív bal határát a bal kamra képezi. Általában azt tanácsolom, hogy emlékezzen pontosan a harmadik bordára - ez folyamatosan találkozni fog Önnel, mint a különböző anatómiai struktúrák referenciapontja;
    • A felső határ (3) a legegyszerűbb. A harmadik borda felső széle mentén halad (ismét a harmadik bordát látjuk) balról jobbra a parasternális vonalak (mindkettő sárga);
    • A szív jobb oldali határa (4): a 3. (ismét azt) felső szélétől az 5. borda felső széléig a jobb oldali paraszternális vonal mentén. A szív ezen határát a jobb kamra alkotja;
    • A szív alsó határa (5): vízszintes vonal, igazolva az ötödik borda porcától a jobb parasternális vonal mentén a szív csúcsáig. Amint láthatja, az 5-ös szám szintén nagyon varázslatos a szív határainak meghatározása szempontjából..

    A szív vezető rendszere. Pacemakerek.

    A szív csodálatos tulajdonságokkal rendelkezik. Ez a szerv képes függetlenül létrehozni egy elektromos impulzust és vezetni a teljes szívizomon. Sőt, a szív képes önállóan megszervezni az összehúzódás helyes ritmusát, amely ideális a vér szállítására az egész testben..

    Ismételten minden vázizom és minden izomszerv csak akkor képes összehúzódni, miután impulzust kapott a központi idegrendszertől. A szív képes önmagában impulzust generálni.

    A szív vezető rendszere felelős ezért - egy speciális típusú szívszövet, amely képes ellátni az idegszövet funkcióit. A szív vezető rendszerét atipikus kardiomiociták képviselik (szó szerint fordítva "atipikus kardiomuszkuláris sejtek"), amelyek különálló formációkba - csomópontokba, kötegekbe és rostokba - csoportosulnak. Nézzük meg őket.

    1. Szinatriális csomó (nodus sinatrialis). A szerző neve Kiss-Fleck csomó. Gyakran sinus csomópontnak is nevezik. A szinatrialis csomópont azon a helyen helyezkedik el, ahol a felső vena cava beáramlik a jobb kamrába (ezt a helyet sinusnak hívják), és a jobb pitvari függelék között. "Bűn" jelentése "szinusz"; Az "átrium", mint tudják, jelentése "átrium". Megkapjuk - "szinatriális csomópont".

    Egyébként sok kezdő az EKG vizsgálatában gyakran felteszi a kérdést - mi az a sinus ritmus, és miért olyan fontos, hogy meg lehessen erősíteni annak jelenlétét vagy hiányát? A válasz meglehetősen egyszerű.

    A szinatrialis (más néven sinus) csomópont az első rendű pacemaker. Ez azt jelenti, hogy általában ez a csomópont gerjesztést generál és továbbvezet a vezető rendszer mentén. Mint tudják, egészséges ember nyugalomban a szinatrialis csomópont 60-90 impulzust generál, ami egybeesik a pulzusszámmal. Ezt a ritmust "helyes szinuszritmusnak" nevezik, mivel kizárólag a szinatrialis csomópont generálja..

    Bármely anatómiai tablettán megtalálható - ez a csomópont a szívvezetési rendszer összes többi eleme felett helyezkedik el.

    2. Atrioventrikuláris csomópont (nodus atrioventricularis). A szerző neve Ashof-Tavara csomó. A pitvari septumban található, közvetlenül a tricuspidis szelep felett. Ha lefordítja ennek a csomópontnak a nevét latinból, megkapja az "atrioventrikuláris csomópont" kifejezést, amely pontosan megfelel annak helyének.

    Az atrioventrikuláris csomópont másodrendű pacemaker. Ha az atrioventrikuláris csomópontnak el kell indítania a szívet, akkor a sinatrialis csomópont ki van kapcsolva. Ez mindig a súlyos patológia jele. Az atrioventrikuláris csomópont képes gerjesztést generálni 40-50 impulzus frekvenciával. Normális esetben nem kelthet izgalmat, egészséges embernél csak vezetőként működik.

    Az antrioventrikuláris csomópont a szinatrialis csomópont után felülről a második csomópont. Azonosítsa a szinatrium csomópontot - ez a legfelső -, és közvetlenül alatta meglátja az atrioventrikuláris csomópontot.

    Hogyan kapcsolódnak a sinus és az atrioventrikuláris csomópontok? Vannak olyan tanulmányok, amelyek három atipikus szívszövet jelenlétére utalnak e csomópontok között. Hivatalosan ezt a három csomagot nem ismerik fel minden forrás, ezért nem különítettem el külön elemre. Azonban az alábbi képen három zöld gerendát rajzoltam - elöl, középen és hátul. Körülbelül így írják le ezeket a csomópontok közötti kötegeket a szerzők, akik elismerik létezésüket..

    3. Egy csomó, gyakran atrioventrikuláris kötegnek (fasciculus atrioventricularis) hívják.

    Miután az impulzus átfutott az atrioventrikuláris csomóponton, két oldalról, vagyis két kamráról tér el. A szívvezetési rendszer rostjait, amelyek az atrioventrikuláris csomópont és a két részre történő elválasztási pont között helyezkednek el, His kötegnek nevezzük..

    Ha bármilyen súlyos betegség miatt a szinatrialis és az atrioventricularis csomópont is ki van kapcsolva, akkor az His kötegének izgalmat kell generálnia. Ez egy harmadrendű pacemaker. Képes 30-40 impulzus generálására percenként.

    Valamiért az előző lépésben egy kötegét ábrázoltam. De ebben kiemelem és aláírom, hogy jobban emlékezz rá:

    4. Az Ő, jobb és bal oldali kötegének lábai (crus dextrum et crus sinistrum). Mint már mondtam, az Ő kötegje jobb és bal lábra oszlik, amelyek mindegyike a megfelelő kamrákba kerül. A kamrák nagyon erős kamrák, ezért külön beidegződési ágakat igényelnek.

    5.Rostok Purkinje. Ezek apró rostok, amelyekbe az Ő kötegének lábai szétszóródnak. Finom hálózattal fonják össze a kamrák teljes szívizomát, biztosítva a gerjesztés teljes vezetését. Ha az összes többi pacemakert kikapcsolják, akkor a Purkinje rostok megpróbálják megmenteni a szívet és az egész testet - képesek kritikusan veszélyes 20 impulzust generálni percenként. Az ilyen pulzusú betegnek sürgős orvosi ellátásra van szüksége.

    Konszolidáljuk a szívvezetési rendszerrel kapcsolatos ismereteinket egy másik ábrával:

    A szív vérellátása

    Az aorta legelső részéből - az izzóból - két nagy artéria indul el, amelyek a koszorúér-sulcusban fekszenek (lásd fent). Jobb oldalon a jobb koszorúér, a bal oldalon pedig a bal koszorúér..

    Itt a szívre nézünk az elülső (vagyis a sternocostalis) felszínről. Zöld színnel kiemeltem a jobb szívkoszorút az aorta izzótól a helyszínig, amikor az elágazásokat kezd adni.

    A jobb koszorúér jobbra és hátul körbeveszi a szívet. A szív hátsó részén a jobb koszorúér egy nagy ágat bocsát ki, az úgynevezett hátsó interventricularis artériát. Ez az artéria a hátsó interventricularis barázdában helyezkedik el. Nézzük meg a szív hátsó (rekeszizom) felületét - itt látjuk a hátsó interventricularis artériát, zöld színnel kiemelve.

    A bal szívkoszorúnak nagyon rövid a törzse. Szinte azonnal az aortahagyma elhagyása után felad egy nagy elülső kamrai ágat, amely az elülső kamrai barázdában fekszik. Ezt követően a bal koszorúér újabb ágat ad le - a borítékot. A körülölelő ág balra és hátra a szív körül hajlik.

    Most pedig a kedvenc zöld színünk kiemeli a bal koszorúér kontúrját az aorta izzótól a területig, ahol két ágra oszlik:

    Ezen ágak egyike a kamrák közötti barázdában rejlik. Ennek megfelelően az elülső kamrai ágról beszélünk:

    A szív hátsó felületén a bal szívkoszorú artéria körüli ága anastomózist (közvetlen kapcsolatot) képez a jobb koszorúérrel. Zöld színnel emeltem ki az anastomosis területét.

    Egy másik nagy anasztomózis képződik a szív csúcsán. Az elülső és a hátsó interventricularis artériák alkotják. Megmutatásához alulról kell néznie a szívet - nem találtam ilyen illusztrációt.

    Valójában sok anasztomózis van a szívet ellátó artériák között. A két nagy, amelyekről korábban beszéltünk, a szív véráramlásának két "gyűrűjét" alkotják.

    De sok kicsi ág elhagyja a koszorúereket és azok kamrai ágait, amelyek hatalmas számú anasztomózisban fonódnak össze.

    Az anasztomózisok száma és az azokon áthaladó vér térfogata nagy klinikai jelentőségű tényező. Képzelje el, hogy a szív egyik nagy artériája trombusba jutott, amely elzárta az artéria lumenjét. A bőséges anasztomózis-hálózattal rendelkező személynél a vér azonnal megkerüli az elkerülő utakat, és a szívizom vért és oxigént kap a biztosítékokon keresztül. Ha kevés anasztomózis van, akkor a szív nagy része vérellátás nélkül marad, és miokardiális infarktus következik be..

    Vénás kiáramlás a szívből

    A szív vénás rendszere apró venulákkal kezdődik, amelyek nagyobb vénákban gyűlnek össze. Ezek a vénák viszont a szívkoszorúba áramlanak, amely a jobb pitvarba nyílik. Amint emlékszel, az egész test összes vénás vére a jobb pitvarba gyűlik össze, és ez alól a szívizom vére sem kivétel..

    Nézzük a szívet a rekeszizom felszínéről. A koszorúér nyílása itt jól látható - zöld színnel kiemelve és az 5-ös számmal jelezve.

    Az elülső interventricularis sulcusban a szív nagy vénája fekszik (vena cordis magna). A szív csúcsának elülső felületén kezdődik, majd az elülső kamrai barázdában, majd a koszorúér barázdájában fekszik. A coronaria sulcusban egy nagy véna a szív körül hátra és balra hajlik, a szív hátsó felületén a coronaria sinuson keresztül a jobb pitvarba áramlik..

    Figyelem - az artériákkal ellentétben a szív nagy vénája mind az elülső kamrai barázdában, mind a koszorúér barázdájában helyezkedik el. Ez még mindig a szív nagy vénája:

    A szív középső vénája a szív csúcsától a hátsó kamrai barázda mentén fut, és a szívkoszorú sinusának jobb végébe áramlik..

    A szív kis véna (vena cordis parva) a jobb koszorúér barázdájában fekszik. Jobbra és hátra irányban a szív körül hajlik, a szívkoszorún keresztül a jobb pitvarba áramlik. Ezen a képen a középső eret zöld színnel emeltem ki, a kisebbet pedig sárga színnel..

    A szív rögzítő készüléke

    A szív kritikus szerv. A szívnek nem szabad szabadon mozognia a mellkasüregben, ezért saját rögzítő berendezéssel rendelkezik. Ez áll belőle:

    1. A szív fő erei az aorta, a pulmonalis törzs és a felső vena cava. Astenikus testtípusú, vékony embereknél a szív szinte függőleges. Szó szerint fel van függesztve ezekről a nagy erekről, ebben az esetben közvetlenül részt vesznek a szív rögzítésében;
    2. A tüdő egyenletes nyomása;
    3. A felső pericardialis szalag (ligamentun sternopericardiaca superior) és az alsó pericardialis szalag (ligamentun sternopericardiaca inferior). Ezek a szalagok a szívburokot a szegycsont (felső szalag) és a szegycsont testének (alsó szalag) alsó részéhez rögzítik;
    4. Erőteljes szalag, amely összeköti a szívburokot a rekeszizommal. Nem találtam ennek a csomagnak latin nevet, de találtam egy rajzot a topográfiai anatómia kedvenc atlaszából. Természetesen ez a Yu.L. atlasza. Zolotko. Az ábrán látható linket zöld pontozott vonallal karikáztam be:

    Alapvető latin kifejezések ebből a cikkből:

      1. Cor;
      2. Apex cordis;
      3. Basis cordis;
      4. Facies diaphragmatica;
      5. Facies sternocostalis;
      6. Facies pulmonalis;
      7. Auricula dextra;
      8. Auricula dextra;
      9. Atrium dexter;
      10. Ventriculus dexter;
      11. Atrium baljóslatú;
      12. Ventriculus baljóslatú;
      13. Fossa ovalis;
      14. Ostium atrioventriculare dextrum;
      15. Ostium atrioventriculare sinistrum;
      16. Septum interventriculare;
      17. Sulcus interventricularis anterior;
      18. Sulcus interventricularis posterior;
      19. Septum interatriale;
      20. Sulcus coronarius;
      21. Valva tricuspidalis;
      22. Valva atrioventricularis sinistra;
      23. Valva trunci pulmonalis;
      24. Valva aortae;
      25. Szívburok;
      26. Szívizom;
      27. Endocardium;
      28. Nodus sinatrialis;
      29. Nodus atrioventricularis;
      30. Fasciculus atrioventricularis;
      31. Crus dextrum et crus sinistrum;
      32. Arteria coronaria dextra;
      33. Arteria coronaria sinistra;
      34. Ramus interventricularis posterior;
      35. Ramus interventricularis anterior;
      36. Ramus circunflexus;
      37. Vena cordis magna;
      38. Vena cordis parva;
      39. Ligamentun sternopericardiaca superior;
      40. Ligamentun sternopericardiaca inferior.

    Ha szidni / dicsérni / kritizálni / kérdést feltenni / hozzáadni a barátokhoz - várom Önt a VKontakte oldalamon, valamint a hozzászólás alatti kommentblokkban. Remélhetőleg, miután elolvasta ezt a cikket, jobban megérti az anatómia csodálatos tudományát. Minden egészséget és hamarosan találkozunk az orvosi blogom oldalán!


    Következő Cikk
    A szegmentált neutrofilek alacsonyabbak